Linear Algebra

2018-2019
Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

Doel vak

After successfully completing this course,
- the student has a working knowledge of the concepts of matrix algebra
and finite-dimensional linear algebra, such as echelon form,
lu-decomposition, linear independence, determinants
- the student is familiar with the general theory of finite-dimensional
vector spaces, in particular with the concepts of basis and dimension
- the student is familiar with the concepts of eigenvalues and
eigenvectors, diagonalization
and singular value decomposition and can apply these concepts in basic
applications in
discrete time dynamical systems,
- has working knowledge of the concepts of inner product spaces and
matrices acting in inner product spaces,
including orthogonal projections and diagonalization of symmetric
matrices.

Inhoud vak

- systems of linear equations
- linear (in)dependence
- linear transformations and matrices
- matrix operations
- determinants
- vector spaces and subspaces
- basis and dimension
- rank of a matrix, dimension theorem
- coordinate systems and change of basis
- eigenvalues and eigenvectors
- diagonalization of matrices
- inner product, length and orthogonality
- orthogonal bases and least-squares problem
- diagonalization of symmetric matrices
- quadratic forms
- singular value decomposition

Onderwijsvorm

2 lectures and 1 exercise class per week

Toetsvorm

Six bi-weekly tests (20 percent, only the best five are taken into
account), a midterm exam (40 percent) and a final exam (40 percent).
There is a resit. For students taking the resit the final grade is
determined by the maximum of the following two numbers: 0.2 times the
average of the best five tests plus 0.8 times the result of the resit
and just the resit.

Literatuur

David C. Lay, Stephen R. Lay and Judi J. McDonald, Linear Algebra and
its Applications, 5th edition, Pearson Global Edition, ISBN-13
9781292092232

Doelgroep

1BA

Algemene informatie

Vakcode X_400042
Studiepunten 6 EC
Periode P4+5
Vakniveau 100
Onderwijstaal Engels
Faculteit Faculteit der Bètawetenschappen
Vakcoördinator S. de Jong
Examinator prof. dr. A.C.M. Ran
Docenten S. de Jong

Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Werkcollege, Deeltoets extra zaalcapaciteit, Hoorcollege
Doelgroepen

Dit vak is ook toegankelijk als: