Sets and Combinatorics

Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

Doel vak

After completing this course, the student
1. is able to prove identities between sets using Venn diagrams and the
algebra of sets or logical reasoning;
2. can compose sets using set operations to produce a desired set, and
conversely, determine the elements of such a composed set;
3. can work with the standard sample spaces of Probability Theory to
compute the sizes of such sample spaces and of typical events;
4. can decide whether a given function is injective, surjective and/or
5. can determine images and preimages of sets under a given function;
6. is able to construct proofs by mathematical induction and apply the
binomial and multinomial theorem in calculations.

Inhoud vak

Sets, set operations, the algebra of set theory, the laws of De Morgan,
product sets and power sets, standard sample spaces of Probability
Theory, basic rules of combinatorics, permutations and combinations,
binomial and multinomial coefficients, binomial and multinomial theorem,
cardinality and (un)countability, functions and graphs, the principle of
mathematical induction.


In each of the first three weeks: two lectures of 2 hours, and one
tutorial of 3 hours. In the fourth week: one lecture of 2 hours and one
tutorial of 2 hours before the final exam.


Three written pretests during each of the first three tutorials, and a
written exam at the end of the course. The exam determines 75% of the
grade, the pretests together determine 25% of the grade. The final grade
is the weighted average of the exam and the pretests (in particular, a
bad grade for one test can be compensated by a good grade for another
test). For the resit exam, the pretests are only taken into account if
this is in the student's favour. If the average grade of the pretests is
lower than that of the resit exam, only the grade of the resit exam will


Lecture Notes for the course and all additional course materials will be
provided through Canvas.



Algemene informatie

Vakcode X_400621
Studiepunten 3 EC
Periode P3
Vakniveau 100
Onderwijstaal Engels
Faculteit Faculteit der Bètawetenschappen
Vakcoördinator dr. R. Hindriks
Examinator dr. R. Hindriks
Docenten dr. R. Hindriks

Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Werkcollege, Hoorcollege

Dit vak is ook toegankelijk als: