Applied Text Mining

2019-2020
Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

Doel vak

After you finished this course, you will be able to use existing
software for the analysis of natural language and to combine software to
automatically mine information from large amounts of text. You have the
knowledge to interpret the results and you can adjust the software
accordingly.

Inhoud vak

In this course, you learn what it takes to build your own reading
machine. A reading machine is a complex piece of software that applies a
large variety of linguistic analyses to a text, each producing a
different type of output. You will learn to segment and tokenise text
and to detect the part-of-speech of words, how to split compounds,
detect entities, events and participants in text, detect emotions and
opinions, interprete temporal expressions, etc. Various aspects of
designing such systems are discussed: how to combine the output of
different modules, how to handle ambiguity, dependencies, error
propagation from one module to the next, how to design top-down,
bottom-up and hybrid approaches and how to involve background knowledge.
Finally, the result of the processing needs to be combined in output
data that the computer can understand and use for reasoning.

Onderwijsvorm

interactive lectures, assignments and practical classes.

Toetsvorm

The course is graded by the assignments and the results of the practical
classes (50%) and a final assignment (50%). Both components must be
graded at least 5.5.

Vereiste voorkennis

Linguistic Research, Programming in Python, Deep Learning for NLP,
Language as Data

Literatuur

To be announced

Doelgroep

Master students in (specialisation Text Mining) and master students with
a background in programming and NLP

Algemene informatie

Vakcode L_PAMATLW002
Studiepunten 6 EC
Periode P3
Vakniveau 400
Onderwijstaal Engels
Faculteit Faculteit der Geesteswetenschappen
Vakcoördinator prof. dr. P.T.J.M. Vossen
Examinator prof. dr. P.T.J.M. Vossen
Docenten prof. dr. P.T.J.M. Vossen

Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Werkcollege
Doelgroepen

Dit vak is ook toegankelijk als: