Fourier Analysis

2019-2020
Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

Doel vak

At the end of this course the student is able to:
a) Calculate the Fourier series of a given Riemann-integrable function
b) Determine the pointwise and prove the mean-square convergence of a
Fourier series
c) Determine good kernels
d) Apply Fourier series theory to Cesàro and Abel summability
e) Calculate the Fourier transfom on the real line
f) Apply the Fourier transform to some PDE's

Inhoud vak

Topics that will treated are:
a) The genesis of Fourier Analysis, in particular the investigation of
the wave equation
b) Basic Properties of Fourier Series (uniqueness, convolutions,
Dirichlet and Poisson kernels)
c) Convergence of Fourier Series (pointwise, mean-square)
d) Cesàro and Abel Summability
e) Some applications of Fourier Series
f) The Fourier transform on the real line (definition, inversion,
Plancherel formula)
g) Applications of the Fourier transform to some partial differential
equations

Onderwijsvorm

Lectures (1x2 hours per week) and Tutorials (1x2 hours per week).
Active participation during the tutorials is expected!

Toetsvorm

There are hand-in exercises with grade H, a midterm with grade M and a
final exam with grade F. Let A=.5(M+F) and B=.1 H+.9 A. To pass the
course the student must have A>=.5 and B>=5.5. The final grade is then
B. There is one resit opportunity for the full course. The grade for the
homework does not count toward the grade of resit.

Literatuur

Mandatory literature:

Fourier Analysis, an Introduction, by Elias M. Stein and Rami Shakarchi.
Princeton Lectures in Analysis I. Princeton University Press, 2003,
ISBN-13: 978-0691113845.

Doelgroep

Bachelor Mathematics Year 2

Aanbevolen voorkennis

First year courses Single variable calculus, Multivariable calculus,
Linear algebra, and Mathematical analysis.

Algemene informatie

Vakcode XB_0005
Studiepunten 6 EC
Periode P1+2
Vakniveau 200
Onderwijstaal Engels
Faculteit Faculteit der Bètawetenschappen
Vakcoördinator dr. T.O. Rot
Examinator dr. T.O. Rot
Docenten dr. T.O. Rot

Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Werkcollege, Deeltoets extra zaalcapaciteit, Hoorcollege
Doelgroepen

Dit vak is ook toegankelijk als: