Introduction to Mathematical Modelling, Latex and Mathematica

2019-2020
Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

Doel vak

After this course the student...
1. ... can formulate a mathematical model (differential equation) to
describe a simple practical situation;
2. ... is able to analyse the model using exact solution methods, or
using the computer;
3. ... can interpret the outcome of the mathematical analysis in the
original practical context, while being aware of the limitations of the
model;
4. ... is able to present the model, analysis and results clearly and
understandably to fellow students in writing;
5. ... can produce his/her own LaTeX document and perform simple
operations and computations in Mathematica.

Inhoud vak

This is a course about mathematical modelling: translating real life
problems into mathematical language, analysing the resulting equations,
and drawing conclusions. You will work in small groups on two
assignments, and will report on these assignments in writing. You will
also learn to use the mathematical typesetting software LaTeX, and to
work with the mathematical software package Mathematica.

Onderwijsvorm

Exercise classes and computer classes. Contact hours per week: 8.

Toetsvorm

Written reports after weeks 1,2 and 4, and counting, respectively, for
15%, 35% and 50% towards the final grade. When the total grade is
insufficient, one of the reports may be handed in a second time, but
only once and within two weeks from the first deadline for the last
report. Other than this, there is no resit exam.

Vereiste voorkennis

Single Variable Calculus.

Literatuur

Texts and assignments will be made available through Canvas.

Doelgroep

BSc Mathematics Year 1

Overige informatie

To participate in the course it is obligatory to be present at the first
lecture, so that groups can be formed.

Algemene informatie

Vakcode XB_0006
Studiepunten 3 EC
Periode P3
Vakniveau 100
Onderwijstaal Engels
Faculteit Faculteit der Bètawetenschappen
Vakcoördinator dr. T.O. Rot
Examinator dr. T.O. Rot
Docenten S. de Jong
dr. T.O. Rot

Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Werkcollege, Hoorcollege
Doelgroepen

Dit vak is ook toegankelijk als: