Analysis I

Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

Doel vak

At the end of this course the student
a) is able prove a theorem with mathematical induction.
b) knows the definition of limit of a sequence and a function and is
able to calculate limits, using various calculus techniques (e.g.
squeeze law and l'Hospitals rule).
c) knows the definition of continuity and is able to prove or disprove
the continuity of a function.
d) knows the definition of derivative of a single variable function and
is able to calculate (higher) derivatives and a Taylor polynomial of a
e) knows the definition of a Riemann integral and is able to prove if a
function is Riemann integrable.
f) is able to calculate an integral, using various calculus techniques
(e.g. substitution method, integration by parts, partial fraction
g) is able to determine if an improper integral is convergent, and
calculate its value.
h) is able to work with complex numbers.

Inhoud vak

In this course we present a thorough introduction of the theory of real
analysis for single variable functions. Theorems and their proofs form
an important part of this course. In addition sufficient attention is
paid to various calculus techniques. We will treat the following topics:
a) Natural numbers and mathematical induction.
b) Rational and real numbers and the completeness of the real numbers.
c) Sequences of real numbers (convergence, subsequences, Cauchy
d) Continuity and limits of real functions. Uniform continuity.
e) Differentiation (derivative of a function, mean value theorems,
L'Hospital's rule, Taylor's theorem).
f) Integration (Riemann integral, improper integral, integration
g) Complex numbers


Lectures (2x2 hours per week) and tutorials (1x2 hours per week).


There will be a midterm exam at the end of period 1 and a final exam at
the end of period 2. Details about the topics treated in each exam and
the calculation of the final grade will be published in Canvas. If your
grade is not sufficient, it is possible to make the resit about all
topics in the spring semester.


1) A Friendly Introduction to Analysis; Single and Multivariable, second
edition, Witold A. J. Kosmala, Pearson. ISBN 0130457965/978-0130457967.
2) Lecture notes, available via Canvas.



Overige informatie

We expect that you attend the tutorials well prepared! That means that
you have already tried to make the exercises at home! Some exercises
will be treated on the blackboard. You can ask questions about other
exercises to the teaching assistant. An attendance list will be used.

Algemene informatie

Vakcode X_400641
Studiepunten 6 EC
Periode P1+2
Vakniveau 100
Onderwijstaal Engels
Faculteit Faculteit der Bètawetenschappen
Vakcoördinator dr. F. Pasquotto
Examinator dr. F. Pasquotto
Docenten dr. M.A. Estevez Fernandez
L.G.A.J. van Montfort
C.H. Schutte
dr. F. Pasquotto

Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Werkcollege, Deeltoets extra zaalcapaciteit, Hoorcollege

Dit vak is ook toegankelijk als: