NL | EN

## Statistics for Networks

2018-2019
Dit vak wordt in het Engels aangeboden. Omschrijvingen kunnen daardoor mogelijk alleen in het Engels worden weergegeven.

### Doel vak

The aim of this course is to get students acquainted with the main
statistical methods and models for network analysis. After the course
the students
-have knowledge of the theory of these models and methods;
-are familar with some important applications;
-have some experience in statisctiacal analysys of networks with R.

### Inhoud vak

Researchers from diverse disciplines as biology, physics, sociology,
economics, computer science and mathematics, are more and more involved
with the collection, modeling and analysis of network data. The
relational nature of network data means that statistical analysis of
such data is generally more involved than the `standard’ statistical
analysis, that different mathematical models and different statistical
methods are needed, and that different problems need to be faced.
The course focuses on the mathematical aspects of statistical modeling
and
statistical analysis of networks, and will touch upon some computational
aspects
of network analysis. Topics that will be discussed are: descriptive
statistics for networks,
network sampling, network modeling, inference for networks, and modeling
and
prediction for processes on network graphs.

### Onderwijsvorm

Lectures, presentations, homework assignments cosisting of theoretical
exercises and/or exercises with R.

### Toetsvorm

Assignments, presentations, and, depending on the number of students, a
final individual assigment or written exam.

### Vereiste voorkennis

An introductory probability course, like Kansrekening 1 (X_400189) plus
Kansrekening 2 (X_400190), and an introductory statistics course, like
Algemene Statistiek (X_400004).

### Literatuur

- Statistical Analysis of Network Data by E.D. Kolaczyk, Springer, 2010.
- Additional material will be provided during the course.

### Doelgroep

XM_MAT_S 1, XM_MAT_AG 1, XM_SFM

### Overige informatie

This course will not be taught in the academic year 2019-2020.

### Aanbevolen voorkennis

Statistical Data Analysis (X_401029)

### Algemene informatie

Vakcode X_405110 6 EC P4+5 600 Engels Faculteit der Bètawetenschappen prof. dr. M.C.M. de Gunst prof. dr. M.C.M. de Gunst prof. dr. M.C.M. de Gunst

### Praktische informatie

Voor dit vak moet je zelf intekenen.

Voor dit vak kun je last-minute intekenen.

Werkvormen Hoorcollege
Doelgroepen

Dit vak is ook toegankelijk als: